
MySQLdb Documentation
Release 1.2.4b4

Andy Dustman

Sep 01, 2017

Contents

1 MySQLdb User’s Guide 3
1.1 Introduction . 3
1.2 Installation . 4
1.3 _mysql . 4

1.3.1 MySQL C API translation . 4
1.3.2 MySQL C API function mapping . 4
1.3.3 Some _mysql examples . 5

1.4 MySQLdb . 7
1.4.1 Functions and attributes . 7
1.4.2 Connection Objects . 9
1.4.3 Cursor Objects . 9
1.4.4 Some examples . 10

1.5 Using and extending . 11
1.6 Embedded Server . 12

2 MySQLdb Package 13
2.1 MySQLdb Package . 13
2.2 connections Module . 15
2.3 converters Module . 17
2.4 cursors Module . 18
2.5 times Module . 18
2.6 Subpackages . 19

2.6.1 constants Package . 19

3 MySQLdb Frequently Asked Questions 21
3.1 Build Errors . 21
3.2 ImportError . 22
3.3 My data disappeared! (or won’t go away!) . 22
3.4 Other Errors . 23
3.5 Other Resources . 23

4 Indices and tables 25

Python Module Index 27

i

ii

MySQLdb Documentation, Release 1.2.4b4

Contents:

Contents 1

MySQLdb Documentation, Release 1.2.4b4

2 Contents

CHAPTER 1

MySQLdb User’s Guide

Contents

• MySQLdb User’s Guide

– Introduction

– Installation

– _mysql

* MySQL C API translation

* MySQL C API function mapping

* Some _mysql examples

– MySQLdb

* Functions and attributes

* Connection Objects

* Cursor Objects

* Some examples

– Using and extending

– Embedded Server

Introduction

MySQLdb is an thread-compatible interface to the popular MySQL database server that provides the Python database
API.

3

MySQLdb Documentation, Release 1.2.4b4

Installation

The README file has complete installation instructions.

_mysql

If you want to write applications which are portable across databases, use MySQLdb, and avoid using this module
directly. _mysql provides an interface which mostly implements the MySQL C API. For more information, see the
MySQL documentation. The documentation for this module is intentionally weak because you probably should use
the higher-level MySQLdb module. If you really need it, use the standard MySQL docs and transliterate as necessary.

MySQL C API translation

The MySQL C API has been wrapped in an object-oriented way. The only MySQL data structures which are imple-
mented are the MYSQL (database connection handle) and MYSQL_RES (result handle) types. In general, any function
which takes MYSQL *mysql as an argument is now a method of the connection object, and any function which takes
MYSQL_RES *result as an argument is a method of the result object. Functions requiring none of the MySQL data
structures are implemented as functions in the module. Functions requiring one of the other MySQL data structures
are generally not implemented. Deprecated functions are not implemented. In all cases, the mysql_ prefix is dropped
from the name. Most of the conn methods listed are also available as MySQLdb Connection object methods. Their
use is non-portable.

MySQL C API function mapping

C API _mysql
mysql_affected_rows() conn.affected_rows()
mysql_autocommit() conn.autocommit()
mysql_character_set_name() conn.character_set_name()
mysql_close() conn.close()
mysql_commit() conn.commit()
mysql_connect() _mysql.connect()
mysql_data_seek() result.data_seek()
mysql_debug() _mysql.debug()
mysql_dump_debug_info conn.dump_debug_info()
mysql_escape_string() _mysql.escape_string()
mysql_fetch_row() result.fetch_row()
mysql_get_character_set_info() conn.get_character_set_info()
mysql_get_client_info() _mysql.get_client_info()
mysql_get_host_info() conn.get_host_info()
mysql_get_proto_info() conn.get_proto_info()
mysql_get_server_info() conn.get_server_info()
mysql_info() conn.info()
mysql_insert_id() conn.insert_id()
mysql_num_fields() result.num_fields()
mysql_num_rows() result.num_rows()
mysql_options() various options to _mysql.connect()
mysql_ping() conn.ping()

Continued on next page

4 Chapter 1. MySQLdb User’s Guide

http://dev.mysql.com/doc/

MySQLdb Documentation, Release 1.2.4b4

Table 1.1 – continued from previous page
C API _mysql
mysql_query() conn.query()
mysql_real_connect() _mysql.connect()
mysql_real_query() conn.query()
mysql_real_escape_string() conn.escape_string()
mysql_rollback() conn.rollback()
mysql_row_seek() result.row_seek()
mysql_row_tell() result.row_tell()
mysql_select_db() conn.select_db()
mysql_set_character_set() conn.set_character_set()
mysql_ssl_set() ssl option to _mysql.connect()
mysql_stat() conn.stat()
mysql_store_result() conn.store_result()
mysql_thread_id() conn.thread_id()
mysql_thread_safe_client() conn.thread_safe_client()
mysql_use_result() conn.use_result()
mysql_warning_count() conn.warning_count()
CLIENT_* MySQLdb.constants.CLIENT.*
CR_* MySQLdb.constants.CR.*
ER_* MySQLdb.constants.ER.*
FIELD_TYPE_* MySQLdb.constants.FIELD_TYPE.*
FLAG_* MySQLdb.constants.FLAG.*

Some _mysql examples

Okay, so you want to use _mysql anyway. Here are some examples.

The simplest possible database connection is:

import _mysql
db=_mysql.connect()

This creates a connection to the MySQL server running on the local machine using the standard UNIX socket (or
named pipe on Windows), your login name (from the USER environment variable), no password, and does not USE a
database. Chances are you need to supply more information.:

db=_mysql.connect("localhost","joebob","moonpie","thangs")

This creates a connection to the MySQL server running on the local machine via a UNIX socket (or named pipe), the
user name “joebob”, the password “moonpie”, and selects the initial database “thangs”.

We haven’t even begun to touch upon all the parameters connect() can take. For this reason, I prefer to use keyword
parameters:

db=_mysql.connect(host="localhost",user="joebob",
passwd="moonpie",db="thangs")

This does exactly what the last example did, but is arguably easier to read. But since the default host is “localhost”,
and if your login name really was “joebob”, you could shorten it to this:

db=_mysql.connect(passwd="moonpie",db="thangs")

UNIX sockets and named pipes don’t work over a network, so if you specify a host other than localhost, TCP will be
used, and you can specify an odd port if you need to (the default port is 3306):

1.3. _mysql 5

MySQLdb Documentation, Release 1.2.4b4

db=_mysql.connect(host="outhouse",port=3307,passwd="moonpie",db="thangs")

If you really had to, you could connect to the local host with TCP by specifying the full host name, or 127.0.0.1.

Generally speaking, putting passwords in your code is not such a good idea:

db=_mysql.connect(host="outhouse",db="thangs",read_default_file="~/.my.cnf")

This does what the previous example does, but gets the username and password and other parameters from ~/.my.cnf
(UNIX-like systems). Read about option files for more details.

So now you have an open connection as db and want to do a query. Well, there are no cursors in MySQL, and no
parameter substitution, so you have to pass a complete query string to db.query():

db.query("""SELECT spam, eggs, sausage FROM breakfast
WHERE price < 5""")

There’s no return value from this, but exceptions can be raised. The exceptions are defined in a separate module,
_mysql_exceptions, but _mysql exports them. Read DB API specification PEP-249 to find out what they are,
or you can use the catch-all MySQLError.

At this point your query has been executed and you need to get the results. You have two options:

r=db.store_result()
...or...
r=db.use_result()

Both methods return a result object. What’s the difference? store_result() returns the entire result set to the
client immediately. If your result set is really large, this could be a problem. One way around this is to add a LIMIT
clause to your query, to limit the number of rows returned. The other is to use use_result(), which keeps the
result set in the server and sends it row-by-row when you fetch. This does, however, tie up server resources, and it ties
up the connection: You cannot do any more queries until you have fetched all the rows. Generally I recommend using
store_result() unless your result set is really huge and you can’t use LIMIT for some reason.

Now, for actually getting real results:

>>> r.fetch_row()
(('3','2','0'),)

This might look a little odd. The first thing you should know is, fetch_row() takes some additional parameters.
The first one is, how many rows (maxrows) should be returned. By default, it returns one row. It may return fewer
rows than you asked for, but never more. If you set maxrows=0, it returns all rows of the result set. If you ever get
an empty tuple back, you ran out of rows.

The second parameter (how) tells it how the row should be represented. By default, it is zero which means, return as
a tuple. how=1 means, return it as a dictionary, where the keys are the column names, or table.column if there
are two columns with the same name (say, from a join). how=2 means the same as how=1 except that the keys are
always table.column; this is for compatibility with the old Mysqldb module.

OK, so why did we get a 1-tuple with a tuple inside? Because we implicitly asked for one row, since we didn’t specify
maxrows.

The other oddity is: Assuming these are numeric columns, why are they returned as strings? Because MySQL returns
all data as strings and expects you to convert it yourself. This would be a real pain in the ass, but in fact, _mysql can
do this for you. (And MySQLdb does do this for you.) To have automatic type conversion done, you need to create a
type converter dictionary, and pass this to connect() as the conv keyword parameter.

The keys of conv should be MySQL column types, which in the C API are FIELD_TYPE_*. You can get these
values like this:

6 Chapter 1. MySQLdb User’s Guide

http://dev.mysql.com/doc/refman/en/option-files.html
https://www.python.org/dev/peps/pep-0249/

MySQLdb Documentation, Release 1.2.4b4

from MySQLdb.constants import FIELD_TYPE

By default, any column type that can’t be found in conv is returned as a string, which works for a lot of stuff. For our
purposes, we probably want this:

my_conv = { FIELD_TYPE.LONG: int }

This means, if it’s a FIELD_TYPE_LONG, call the builtin int() function on it. Note that FIELD_TYPE_LONG
is an INTEGER column, which corresponds to a C long, which is also the type used for a normal Python integer.
But beware: If it’s really an UNSIGNED INTEGER column, this could cause overflows. For this reason, MySQLdb
actually uses long() to do the conversion. But we’ll ignore this potential problem for now.

Then if you use db=_mysql.connect(conv=my_conv...), the results will come back ((3, 2, 0),),
which is what you would expect.

MySQLdb

MySQLdb is a thin Python wrapper around _mysql which makes it compatible with the Python DB API interface
(version 2). In reality, a fair amount of the code which implements the API is in _mysql for the sake of efficiency.

The DB API specification PEP-249 should be your primary guide for using this module. Only deviations from the
spec and other database-dependent things will be documented here.

Functions and attributes

Only a few top-level functions and attributes are defined within MySQLdb.

connect(parameters...) Constructor for creating a connection to the database. Returns a Connection Object. Param-
eters are the same as for the MySQL C API. In addition, there are a few additional keywords that correspond to
what you would pass mysql_options() before connecting. Note that some parameters must be specified as
keyword arguments! The default value for each parameter is NULL or zero, as appropriate. Consult the MySQL
documentation for more details. The important parameters are:

host name of host to connect to. Default: use the local host via a UNIX socket (where applicable)

user user to authenticate as. Default: current effective user.

passwd password to authenticate with. Default: no password.

db database to use. Default: no default database.

port TCP port of MySQL server. Default: standard port (3306).

unix_socket location of UNIX socket. Default: use default location or TCP for remote hosts.

conv type conversion dictionary. Default: a copy of MySQLdb.converters.conversions

compress Enable protocol compression. Default: no compression.

connect_timeout Abort if connect is not completed within given number of seconds. Default: no timeout (?)

named_pipe Use a named pipe (Windows). Default: don’t.

init_command Initial command to issue to server upon connection. Default: Nothing.

read_default_file MySQL configuration file to read; see the MySQL documentation for mysql_options().

read_default_group Default group to read; see the MySQL documentation for mysql_options().

1.4. MySQLdb 7

https://www.python.org/dev/peps/pep-0249/

MySQLdb Documentation, Release 1.2.4b4

cursorclass cursor class that cursor() uses, unless overridden. Default: MySQLdb.cursors.Cursor.
This must be a keyword parameter.

use_unicode If True, CHAR and VARCHAR and TEXT columns are returned as Unicode strings, using the
configured character set. It is best to set the default encoding in the server configuration, or client con-
figuration (read with read_default_file). If you change the character set after connecting (MySQL-4.1 and
later), you’ll need to put the correct character set name in connection.charset.

If False, text-like columns are returned as normal strings, but you can always write Unicode strings.

This must be a keyword parameter.

charset If present, the connection character set will be changed to this character set, if they are not equal.
Support for changing the character set requires MySQL-4.1 and later server; if the server is too old, Un-
supportedError will be raised. This option implies use_unicode=True, but you can override this with
use_unicode=False, though you probably shouldn’t.

If not present, the default character set is used.

This must be a keyword parameter.

sql_mode If present, the session SQL mode will be set to the given string. For more information on sql_mode,
see the MySQL documentation. Only available for 4.1 and newer servers.

If not present, the session SQL mode will be unchanged.

This must be a keyword parameter.

ssl This parameter takes a dictionary or mapping, where the keys are parameter names used by the mysql_ssl_set
MySQL C API call. If this is set, it initiates an SSL connection to the server; if there is no SSL support in
the client, an exception is raised. This must be a keyword parameter.

apilevel String constant stating the supported DB API level. ‘2.0’

threadsafety Integer constant stating the level of thread safety the interface supports. This is set to 1, which means:
Threads may share the module.

The MySQL protocol can not handle multiple threads using the same connection at once. Some earlier versions
of MySQLdb utilized locking to achieve a threadsafety of 2. While this is not terribly hard to accomplish using
the standard Cursor class (which uses mysql_store_result()), it is complicated by SSCursor (which
uses mysql_use_result(); with the latter you must ensure all the rows have been read before another
query can be executed. It is further complicated by the addition of transactions, since transactions start when
a cursor execute a query, but end when COMMIT or ROLLBACK is executed by the Connection object. Two
threads simply cannot share a connection while a transaction is in progress, in addition to not being able to share
it during query execution. This excessively complicated the code to the point where it just isn’t worth it.

The general upshot of this is: Don’t share connections between threads. It’s really not worth your effort or
mine, and in the end, will probably hurt performance, since the MySQL server runs a separate thread for each
connection. You can certainly do things like cache connections in a pool, and give those connections to one
thread at a time. If you let two threads use a connection simultaneously, the MySQL client library will probably
upchuck and die. You have been warned.

charset The character set used by the connection. In MySQL-4.1 and newer, it is possible (but not recommended)
to change the connection’s character set with an SQL statement. If you do this, you’ll also need to change this
attribute. Otherwise, you’ll get encoding errors.

paramstyle String constant stating the type of parameter marker formatting expected by the interface. Set to ‘format’
= ANSI C printf format codes, e.g. ‘...WHERE name=%s’. If a mapping object is used for conn.execute(),
then the interface actually uses ‘pyformat’ = Python extended format codes, e.g. ‘...WHERE name=%(name)s’.
However, the API does not presently allow the specification of more than one style in paramstyle.

Note that any literal percent signs in the query string passed to execute() must be escaped, i.e. %%.

8 Chapter 1. MySQLdb User’s Guide

http://dev.mysql.com/doc/refman/en/mysql-ssl-set.html

MySQLdb Documentation, Release 1.2.4b4

Parameter placeholders can only be used to insert column values. They can not be used for other parts of SQL,
such as table names, statements, etc.

conv A dictionary or mapping which controls how types are converted from MySQL to Python and vice versa.

If the key is a MySQL type (from FIELD_TYPE.*), then the value can be either:

• a callable object which takes a string argument (the MySQL value),’ returning a Python value

• a sequence of 2-tuples, where the first value is a combination of flags from MySQLdb.constants.
FLAG, and the second value is a function as above. The sequence is tested until the flags on the field match
those of the first value. If both values are None, then the default conversion is done. Presently this is only
used to distinguish TEXT and BLOB columns.

If the key is a Python type or class, then the value is a callable Python object (usually a function) taking two
arguments (value to convert, and the conversion dictionary) which converts values of this type to a SQL literal
string value.

This is initialized with reasonable defaults for most types. When creating a Connection object, you can pass your
own type converter dictionary as a keyword parameter. Otherwise, it uses a copy of MySQLdb.converters.
conversions. Several non-standard types are returned as strings, which is how MySQL returns all columns.
For more details, see the built-in module documentation.

Connection Objects

Connection objects are returned by the connect() function.

commit() If the database and the tables support transactions, this commits the current transaction; otherwise this
method successfully does nothing.

rollback() If the database and tables support transactions, this rolls back (cancels) the current transaction; otherwise
a NotSupportedError is raised.

cursor([cursorclass]) MySQL does not support cursors; however, cursors are easily emulated. You can supply an
alternative cursor class as an optional parameter. If this is not present, it defaults to the value given when
creating the connection object, or the standard Cursor class. Also see the additional supplied cursor classes in
the usage section.

There are many more methods defined on the connection object which are MySQL-specific. For more information on
them, consult the internal documentation using pydoc.

Cursor Objects

callproc(procname, args) Calls stored procedure procname with the sequence of arguments in args. Returns the
original arguments. Stored procedure support only works with MySQL-5.0 and newer.

Compatibility note: PEP-249 specifies that if there are OUT or INOUT parameters, the modified values are
to be returned. This is not consistently possible with MySQL. Stored procedure arguments must be passed as
server variables, and can only be returned with a SELECT statement. Since a stored procedure may return zero
or more result sets, it is impossible for MySQLdb to determine if there are result sets to fetch before the modified
parmeters are accessible.

The parameters are stored in the server as @_*procname*_*n*, where n is the position of the parameter. I.e.,
if you cursor.callproc(‘foo’, (a, b, c)), the parameters will be accessible by a SELECT statement as @_foo_0,
@_foo_1, and @_foo_2.

Compatibility note: It appears that the mere act of executing the CALL statement produces an empty result set,
which appears after any result sets which might be generated by the stored procedure. Thus, you will always
need to use nextset() to advance result sets.

1.4. MySQLdb 9

https://www.python.org/dev/peps/pep-0249/

MySQLdb Documentation, Release 1.2.4b4

close() Closes the cursor. Future operations raise ProgrammingError. If you are using server-side cursors, it is
very important to close the cursor when you are done with it and before creating a new one.

info() Returns some information about the last query. Normally you don’t need to check this. If there are any MySQL
warnings, it will cause a Warning to be issued through the Python warning module. By default, Warning causes
a message to appear on the console. However, it is possible to filter these out or cause Warning to be raised as
exception. See the MySQL docs for mysql_info(), and the Python warning module. (Non-standard)

setinputsizes() Does nothing, successfully.

setoutputsizes() Does nothing, successfully.

nextset() Advances the cursor to the next result set, discarding the remaining rows in the current result set. If there
are no additional result sets, it returns None; otherwise it returns a true value.

Note that MySQL doesn’t support multiple result sets until 4.1.

Some examples

The connect() method works nearly the same as with _mysql:

import MySQLdb
db=MySQLdb.connect(passwd="moonpie",db="thangs")

To perform a query, you first need a cursor, and then you can execute queries on it:

c=db.cursor()
max_price=5
c.execute("""SELECT spam, eggs, sausage FROM breakfast

WHERE price < %s""", (max_price,))

In this example, max_price=5 Why, then, use %s in the string? Because MySQLdb will convert it to a SQL literal
value, which is the string ‘5’. When it’s finished, the query will actually say, ”...WHERE price < 5”.

Why the tuple? Because the DB API requires you to pass in any parameters as a sequence. Due to the design of the
parser, (max_price) is interpreted as using algebraic grouping and simply as max_price and not a tuple. Adding a
comma, i.e. (max_price,) forces it to make a tuple.

And now, the results:

>>> c.fetchone()
(3L, 2L, 0L)

Quite unlike the _mysql example, this returns a single tuple, which is the row, and the values are properly converted
by default... except... What’s with the L’s?

As mentioned earlier, while MySQL’s INTEGER column translates perfectly into a Python integer, UNSIGNED
INTEGER could overflow, so these values are converted to Python long integers instead.

If you wanted more rows, you could use c.fetchmany(n) or c.fetchall(). These do exactly what you think
they do. On c.fetchmany(n), the n is optional and defaults to c.arraysize, which is normally 1. Both of
these methods return a sequence of rows, or an empty sequence if there are no more rows. If you use a weird cursor
class, the rows themselves might not be tuples.

Note that in contrast to the above, c.fetchone() returns None when there are no more rows to fetch.

The only other method you are very likely to use is when you have to do a multi-row insert:

10 Chapter 1. MySQLdb User’s Guide

MySQLdb Documentation, Release 1.2.4b4

c.executemany(
"""INSERT INTO breakfast (name, spam, eggs, sausage, price)
VALUES (%s, %s, %s, %s, %s)""",
[
("Spam and Sausage Lover's Plate", 5, 1, 8, 7.95),
("Not So Much Spam Plate", 3, 2, 0, 3.95),
("Don't Wany ANY SPAM! Plate", 0, 4, 3, 5.95)
])

Here we are inserting three rows of five values. Notice that there is a mix of types (strings, ints, floats) though we still
only use %s. And also note that we only included format strings for one row. MySQLdb picks those out and duplicates
them for each row.

Using and extending

In general, it is probably wise to not directly interact with the DB API except for small applications. Databases, even
SQL databases, vary widely in capabilities and may have non-standard features. The DB API does a good job of
providing a reasonably portable interface but some methods are non-portable. Specifically, the parameters accepted
by connect() are completely implementation-dependent.

If you believe your application may need to run on several different databases, the author recommends the following
approach, based on personal experience: Write a simplified API for your application which implements the specific
queries and operations your application needs to perform. Implement this API as a base class which should be have
few database dependencies, and then derive a subclass from this which implements the necessary dependencies. In
this way, porting your application to a new database should be a relatively simple matter of creating a new subclass,
assuming the new database is reasonably standard.

Because MySQLdb’s Connection and Cursor objects are written in Python, you can easily derive your own subclasses.
There are several Cursor classes in MySQLdb.cursors:

BaseCursor The base class for Cursor objects. This does not raise Warnings.

CursorStoreResultMixIn Causes the Cursor to use the mysql_store_result() function to get the query result.
The entire result set is stored on the client side.

CursorUseResultMixIn Causes the cursor to use the mysql_use_result() function to get the query result. The
result set is stored on the server side and is transferred row by row using fetch operations.

CursorTupleRowsMixIn Causes the cursor to return rows as a tuple of the column values.

CursorDictRowsMixIn

Causes the cursor to return rows as a dictionary, where the keys are column names and the values are
column values. Note that if the column names are not unique, i.e., you are selecting from two tables that
share column names, some of them will be rewritten as table.column. This can be avoided by using
the SQL AS keyword. (This is yet-another reason not to use * in SQL queries, particularly where JOIN
is involved.)

Cursor The default cursor class. This class is composed of CursorWarningMixIn,
CursorStoreResultMixIn, CursorTupleRowsMixIn, and BaseCursor, i.e. it raises Warning,
uses mysql_store_result(), and returns rows as tuples.

DictCursor Like Cursor except it returns rows as dictionaries.

SSCursor A “server-side” cursor. Like Cursor but uses CursorUseResultMixIn. Use only if you are dealing
with potentially large result sets.

SSDictCursor Like SSCursor except it returns rows as dictionaries.

1.5. Using and extending 11

MySQLdb Documentation, Release 1.2.4b4

Embedded Server

Instead of connecting to a stand-alone server over the network, the embedded server support lets you run a full server
right in your Python code or application server.

If you have built MySQLdb with embedded server support, there are two additional functions you will need to make
use of:

server_init(args, groups) Initialize embedded server. If this client is not linked against the embedded
server library, this function does nothing.

args sequence of command-line arguments

groups sequence of groups to use in defaults files

server_end() Shut down embedded server. If not using an embedded server, this does nothing.

See the MySQL documentation for more information on the embedded server.

Title MySQLdb: a Python interface for MySQL

Author Andy Dustman

Version $Revision$

12 Chapter 1. MySQLdb User’s Guide

CHAPTER 2

MySQLdb Package

MySQLdb Package

MySQLdb - A DB API v2.0 compatible interface to MySQL.

This package is a wrapper around _mysql, which mostly implements the MySQL C API.

connect() – connects to server

See the C API specification and the MySQL documentation for more info on other items.

For information on how MySQLdb handles type conversion, see the MySQLdb.converters module.

MySQLdb.Binary(x)

MySQLdb.Connect(*args, **kwargs)
Factory function for connections.Connection.

MySQLdb.Connection(*args, **kwargs)
Factory function for connections.Connection.

MySQLdb.Date
alias of date

MySQLdb.Time
alias of time

MySQLdb.Timestamp
alias of datetime

MySQLdb.DateFromTicks(ticks)
Convert UNIX ticks into a date instance.

MySQLdb.TimeFromTicks(ticks)
Convert UNIX ticks into a time instance.

MySQLdb.TimestampFromTicks(ticks)
Convert UNIX ticks into a datetime instance.

13

MySQLdb Documentation, Release 1.2.4b4

exception MySQLdb.DataError
Bases: _mysql_exceptions.DatabaseError

Exception raised for errors that are due to problems with the processed data like division by zero, numeric value
out of range, etc.

exception MySQLdb.DatabaseError
Bases: _mysql_exceptions.Error

Exception raised for errors that are related to the database.

exception MySQLdb.Error
Bases: _mysql_exceptions.MySQLError

Exception that is the base class of all other error exceptions (not Warning).

exception MySQLdb.IntegrityError
Bases: _mysql_exceptions.DatabaseError

Exception raised when the relational integrity of the database is affected, e.g. a foreign key check fails, duplicate
key, etc.

exception MySQLdb.InterfaceError
Bases: _mysql_exceptions.Error

Exception raised for errors that are related to the database interface rather than the database itself.

exception MySQLdb.InternalError
Bases: _mysql_exceptions.DatabaseError

Exception raised when the database encounters an internal error, e.g. the cursor is not valid anymore, the
transaction is out of sync, etc.

exception MySQLdb.MySQLError
Bases: Exception

Exception related to operation with MySQL.

exception MySQLdb.NotSupportedError
Bases: _mysql_exceptions.DatabaseError

Exception raised in case a method or database API was used which is not supported by the database, e.g.
requesting a .rollback() on a connection that does not support transaction or has transactions turned off.

class MySQLdb.DBAPISet
Bases: frozenset

A special type of set for which A == x is true if A is a DBAPISet and x is a member of that set.

exception MySQLdb.OperationalError
Bases: _mysql_exceptions.DatabaseError

Exception raised for errors that are related to the database’s operation and not necessarily under the control of
the programmer, e.g. an unexpected disconnect occurs, the data source name is not found, a transaction could
not be processed, a memory allocation error occurred during processing, etc.

exception MySQLdb.ProgrammingError
Bases: _mysql_exceptions.DatabaseError

Exception raised for programming errors, e.g. table not found or already exists, syntax error in the SQL state-
ment, wrong number of parameters specified, etc.

exception MySQLdb.Warning
Bases: Warning, _mysql_exceptions.MySQLError

14 Chapter 2. MySQLdb Package

MySQLdb Documentation, Release 1.2.4b4

Exception raised for important warnings like data truncations while inserting, etc.

MySQLdb.connect(*args, **kwargs)
Factory function for connections.Connection.

MySQLdb.debug()
Does a DBUG_PUSH with the given string. mysql_debug() uses the Fred Fish debug library. To use this
function, you must compile the client library to support debugging.

MySQLdb.escape()
escape(obj, dict) – escape any special characters in object obj using mapping dict to provide quoting functions
for each type. Returns a SQL literal string.

MySQLdb.escape_dict()
escape_sequence(d, dict) – escape any special characters in dictionary d using mapping dict to provide quoting
functions for each type. Returns a dictionary of escaped items.

MySQLdb.escape_sequence()
escape_sequence(seq, dict) – escape any special characters in sequence seq using mapping dict to provide quot-
ing functions for each type. Returns a tuple of escaped items.

MySQLdb.escape_string()
escape_string(s) – quote any SQL-interpreted characters in string s.

Use connection.escape_string(s), if you use it at all. _mysql.escape_string(s) cannot handle character sets. You
are probably better off using connection.escape(o) instead, since it will escape entire sequences as well as strings.

MySQLdb.get_client_info()
get_client_info() – Returns a string that represents the client library version.

MySQLdb.string_literal()
string_literal(obj) – converts object obj into a SQL string literal. This means, any special SQL characters are
escaped, and it is enclosed within single quotes. In other words, it performs:

“’%s”’ % escape_string(str(obj))

Use connection.string_literal(obj), if you use it at all. _mysql.string_literal(obj) cannot handle character sets.

connections Module

This module implements connections for MySQLdb. Presently there is only one class: Connection. Others are
unlikely. However, you might want to make your own subclasses. In most cases, you will probably override Connec-
tion.default_cursor with a non-standard Cursor class.

class MySQLdb.connections.Connection(*args, **kwargs)
Bases: _mysql.connection

MySQL Database Connection Object

exception DataError
Bases: _mysql_exceptions.DatabaseError

Exception raised for errors that are due to problems with the processed data like division by zero, numeric
value out of range, etc.

exception Connection.DatabaseError
Bases: _mysql_exceptions.Error

Exception raised for errors that are related to the database.

2.2. connections Module 15

MySQLdb Documentation, Release 1.2.4b4

exception Connection.Error
Bases: _mysql_exceptions.MySQLError

Exception that is the base class of all other error exceptions (not Warning).

exception Connection.IntegrityError
Bases: _mysql_exceptions.DatabaseError

Exception raised when the relational integrity of the database is affected, e.g. a foreign key check fails,
duplicate key, etc.

exception Connection.InterfaceError
Bases: _mysql_exceptions.Error

Exception raised for errors that are related to the database interface rather than the database itself.

exception Connection.InternalError
Bases: _mysql_exceptions.DatabaseError

Exception raised when the database encounters an internal error, e.g. the cursor is not valid anymore, the
transaction is out of sync, etc.

exception Connection.NotSupportedError
Bases: _mysql_exceptions.DatabaseError

Exception raised in case a method or database API was used which is not supported by the database, e.g.
requesting a .rollback() on a connection that does not support transaction or has transactions turned off.

exception Connection.OperationalError
Bases: _mysql_exceptions.DatabaseError

Exception raised for errors that are related to the database’s operation and not necessarily under the control
of the programmer, e.g. an unexpected disconnect occurs, the data source name is not found, a transaction
could not be processed, a memory allocation error occurred during processing, etc.

exception Connection.ProgrammingError
Bases: _mysql_exceptions.DatabaseError

Exception raised for programming errors, e.g. table not found or already exists, syntax error in the SQL
statement, wrong number of parameters specified, etc.

exception Connection.Warning
Bases: Warning, _mysql_exceptions.MySQLError

Exception raised for important warnings like data truncations while inserting, etc.

Connection.autocommit(on)

Connection.begin()
Explicitly begin a connection. Non-standard. DEPRECATED: Will be removed in 1.3. Use an SQL
BEGIN statement instead.

Connection.cursor(cursorclass=None)
Create a cursor on which queries may be performed. The optional cursorclass parameter is used to create
the Cursor. By default, self.cursorclass=cursors.Cursor is used.

Connection.default_cursor
alias of Cursor

Connection.errorhandler(connection, cursor, errorclass, errorvalue)
If cursor is not None, (errorclass, errorvalue) is appended to cursor.messages; otherwise it is appended to
connection.messages. Then errorclass is raised with errorvalue as the value.

You can override this with your own error handler by assigning it to the instance.

16 Chapter 2. MySQLdb Package

MySQLdb Documentation, Release 1.2.4b4

Connection.literal(o)
If o is a single object, returns an SQL literal as a string. If o is a non-string sequence, the items of the
sequence are converted and returned as a sequence.

Non-standard. For internal use; do not use this in your applications.

Connection.query(query)

Connection.set_character_set(charset)
Set the connection character set to charset. The character set can only be changed in MySQL-4.1 and
newer. If you try to change the character set from the current value in an older version, NotSupportedError
will be raised.

Connection.set_sql_mode(sql_mode)
Set the connection sql_mode. See MySQL documentation for legal values.

Connection.show_warnings()
Return detailed information about warnings as a sequence of tuples of (Level, Code, Message). This is
only supported in MySQL-4.1 and up. If your server is an earlier version, an empty sequence is returned.

Connection.waiter = None

converters Module

MySQLdb type conversion module

This module handles all the type conversions for MySQL. If the default type conversions aren’t what you need, you
can make your own. The dictionary conversions maps some kind of type to a conversion function which returns the
corresponding value:

Key: FIELD_TYPE.* (from MySQLdb.constants)

Conversion function:

Arguments: string

Returns: Python object

Key: Python type object (from types) or class

Conversion function:

Arguments: Python object of indicated type or class AND conversion dictionary

Returns: SQL literal value

Notes: Most conversion functions can ignore the dictionary, but it is a required parameter. It is nec-
essary for converting things like sequences and instances.

Don’t modify conversions if you can avoid it. Instead, make copies (with the copy() method), modify the copies, and
then pass them to MySQL.connect().

MySQLdb.converters.Bool2Str(s, d)

MySQLdb.converters.Float2Str(o, d)

MySQLdb.converters.None2NULL(o, d)
Convert None to NULL.

MySQLdb.converters.Set2Str(s, d)

MySQLdb.converters.Str2Set(s)

2.3. converters Module 17

MySQLdb Documentation, Release 1.2.4b4

MySQLdb.converters.Thing2Literal(o, d)
Convert something into a SQL string literal. If using MySQL-3.23 or newer, string_literal() is a method of the
_mysql.MYSQL object, and this function will be overridden with that method when the connection is created.

MySQLdb.converters.Thing2Str(s, d)
Convert something into a string via str().

MySQLdb.converters.Unicode2Str(s, d)
Convert a unicode object to a string using the default encoding. This is only used as a placeholder for the real
function, which is connection-dependent.

MySQLdb.converters.array2Str(o, d)

MySQLdb.converters.char_array(s)

MySQLdb.converters.quote_tuple(t, d)

cursors Module

MySQLdb Cursors

This module implements Cursors of various types for MySQLdb. By default, MySQLdb uses the Cursor class.

class MySQLdb.cursors.Cursor(connection)
Bases: MySQLdb.cursors.CursorStoreResultMixIn, MySQLdb.cursors.
CursorTupleRowsMixIn, MySQLdb.cursors.BaseCursor

This is the standard Cursor class that returns rows as tuples and stores the result set in the client.

times Module

times module

This module provides some Date and Time classes for dealing with MySQL data.

Use Python datetime module to handle date and time columns.

MySQLdb.times.DateFromTicks(ticks)
Convert UNIX ticks into a date instance.

MySQLdb.times.DateTime2literal(d, c)
Format a DateTime object as an ISO timestamp.

MySQLdb.times.DateTimeDelta2literal(d, c)
Format a DateTimeDelta object as a time.

MySQLdb.times.DateTime_or_None(s)

MySQLdb.times.Date_or_None(s)

MySQLdb.times.TimeDelta_or_None(s)

MySQLdb.times.TimeFromTicks(ticks)
Convert UNIX ticks into a time instance.

MySQLdb.times.Time_or_None(s)

MySQLdb.times.TimestampFromTicks(ticks)
Convert UNIX ticks into a datetime instance.

MySQLdb.times.format_TIMEDELTA(v)

18 Chapter 2. MySQLdb Package

MySQLdb Documentation, Release 1.2.4b4

MySQLdb.times.format_TIMESTAMP(d)

MySQLdb.times.mysql_timestamp_converter(s)
Convert a MySQL TIMESTAMP to a Timestamp object.

Subpackages

constants Package

constants Package

CLIENT Module

MySQL CLIENT constants

These constants are used when creating the connection. Use bitwise-OR (|) to combine options together, and pass
them as the client_flags parameter to MySQLdb.Connection. For more information on these flags, see the MySQL C
API documentation for mysql_real_connect().

CR Module

MySQL Connection Errors

Nearly all of these raise OperationalError. COMMANDS_OUT_OF_SYNC raises ProgrammingError.

ER Module

MySQL ER Constants

These constants are error codes for the bulk of the error conditions that may occur.

FIELD_TYPE Module

MySQL FIELD_TYPE Constants

These constants represent the various column (field) types that are supported by MySQL.

FLAG Module

MySQL FLAG Constants

These flags are used along with the FIELD_TYPE to indicate various properties of columns in a result set.

REFRESH Module

MySQL REFRESH Constants

These constants seem to mostly deal with things internal to the MySQL server. Forget you saw this.

2.6. Subpackages 19

MySQLdb Documentation, Release 1.2.4b4

20 Chapter 2. MySQLdb Package

CHAPTER 3

MySQLdb Frequently Asked Questions

Contents

• MySQLdb Frequently Asked Questions

– Build Errors

– ImportError

– My data disappeared! (or won’t go away!)

– Other Errors

– Other Resources

Build Errors

ld: fatal: library -lmysqlclient_r: not found

mysqlclient_r is the thread-safe library. It’s not available on all platforms, or all installations, apparently. You’ll need
to reconfigure site.cfg (in MySQLdb-1.2.1 and newer) to have threadsafe = False.

mysql.h: No such file or directory

This almost always mean you don’t have development packages installed. On some systems, C headers for various
things (like MySQL) are distributed as a separate package. You’ll need to figure out what that is and install it, but
often the name ends with -devel.

Another possibility: Some older versions of mysql_config behave oddly and may throw quotes around some of
the path names, which confused MySQLdb-1.2.0. 1.2.1 works around these problems. If you see things like -
I’/usr/local/include/mysql’ in your compile command, that’s probably the issue, but it shouldn’t happen any more.

21

MySQLdb Documentation, Release 1.2.4b4

ImportError

ImportError: No module named _mysql

If you see this, it’s likely you did some wrong when installing MySQLdb; re-read (or read) README. _mysql is the
low-level C module that interfaces with the MySQL client library.

Various versions of MySQLdb in the past have had build issues on “weird” platforms; “weird” in this case means “not
Linux”, though generally there aren’t problems on Unix/POSIX platforms, including BSDs and Mac OS X. Windows
has been more problematic, in part because there is no mysql_config available in the Windows installation of MySQL.
1.2.1 solves most, if not all, of these problems, but you will still have to edit a configuration file so that the setup knows
where to find MySQL and what libraries to include.

ImportError: libmysqlclient_r.so.14: cannot open shared object file: No such file or directory

The number after .so may vary, but this means you have a version of MySQLdb compiled against one version of
MySQL, and are now trying to run it against a different version. The shared library version tends to change between
major releases.

Solution: Rebuilt MySQLdb, or get the matching version of MySQL.

Another thing that can cause this: The MySQL libraries may not be on your system path.

Solutions:

• set the LD_LIBRARY_PATH environment variable so that it includes the path to the MySQL libraries.

• set static=True in site.cfg for static linking

• reconfigure your system so that the MySQL libraries are on the default loader path. In Linux, you edit
/etc/ld.so.conf and run ldconfig. For Solaris, see Linker and Libraries Guide.

ImportError: ld.so.1: python: fatal: libmtmalloc.so.1: DF_1_NOOPEN tagged object may not be dlopen()’ed

This is a weird one from Solaris. What does it mean? I have no idea. However, things like this can happen if there
is some sort of a compiler or environment mismatch between Python and MySQL. For example, on some commercial
systems, you might have some code compiled with their own compiler, and other things compiled with GCC. They
don’t always mesh together. One way to encounter this is by getting binary packages from different vendors.

Solution: Rebuild Python or MySQL (or maybe both) from source.

ImportError: dlopen(./_mysql.so, 2): Symbol not found: _sprintf$LDBLStub Referenced from:
./_mysql.so Expected in: dynamic lookup

This is one from Mac OS X. It seems to have been a compiler mismatch, but this time between two different versions
of GCC. It seems nearly every major release of GCC changes the ABI in some why, so linking code compiled with
GCC-3.3 and GCC-4.0, for example, can be problematic.

My data disappeared! (or won’t go away!)

Starting with 1.2.0, MySQLdb disables autocommit by default, as required by the DB-API standard (PEP-249). If you
are using InnoDB tables or some other type of transactional table type, you’ll need to do connection.commit() before
closing the connection, or else none of your changes will be written to the database.

Conversely, you can also use connection.rollback() to throw away any changes you’ve made since the last commit.

Important note: Some SQL statements – specifically DDL statements like CREATE TABLE – are non-transactional,
so they can’t be rolled back, and they cause pending transactions to commit.

22 Chapter 3. MySQLdb Frequently Asked Questions

http://docs.oracle.com/cd/E19253-01/817-1984/chapter6-63352/
https://www.python.org/dev/peps/pep-0249/

MySQLdb Documentation, Release 1.2.4b4

Other Errors

OperationalError: (1251, ‘Client does not support authentication protocol requested by server; consider
upgrading MySQL client’)

This means your server and client libraries are not the same version. More specifically, it probably means you have a
4.1 or newer server and 4.0 or older client. You can either upgrade the client side, or try some of the workarounds in
Password Hashing as of MySQL 4.1.

Other Resources

• Help forum. Please search before posting.

• Google

• READ README!

• Read the User’s Guide

• Read PEP-249

3.4. Other Errors 23

http://dev.mysql.com/doc/refman/5.0/en/password-hashing.html
http://www.google.com/
https://www.python.org/dev/peps/pep-0249/

MySQLdb Documentation, Release 1.2.4b4

24 Chapter 3. MySQLdb Frequently Asked Questions

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

25

MySQLdb Documentation, Release 1.2.4b4

26 Chapter 4. Indices and tables

Python Module Index

m
MySQLdb, 13
MySQLdb.connections, 15
MySQLdb.constants, 19
MySQLdb.constants.CLIENT, 19
MySQLdb.constants.CR, 19
MySQLdb.constants.ER, 19
MySQLdb.constants.FIELD_TYPE, 19
MySQLdb.constants.FLAG, 19
MySQLdb.constants.REFRESH, 19
MySQLdb.converters, 17
MySQLdb.cursors, 18
MySQLdb.times, 18

27

MySQLdb Documentation, Release 1.2.4b4

28 Python Module Index

Index

A
array2Str() (in module MySQLdb.converters), 18
autocommit() (MySQLdb.connections.Connection

method), 16

B
begin() (MySQLdb.connections.Connection method), 16
Binary() (in module MySQLdb), 13
Bool2Str() (in module MySQLdb.converters), 17

C
char_array() (in module MySQLdb.converters), 18
Connect() (in module MySQLdb), 13
connect() (in module MySQLdb), 15
Connection (class in MySQLdb.connections), 15
Connection() (in module MySQLdb), 13
Connection.DatabaseError, 15
Connection.DataError, 15
Connection.Error, 15
Connection.IntegrityError, 16
Connection.InterfaceError, 16
Connection.InternalError, 16
Connection.NotSupportedError, 16
Connection.OperationalError, 16
Connection.ProgrammingError, 16
Connection.Warning, 16
Cursor (class in MySQLdb.cursors), 18
cursor() (MySQLdb.connections.Connection method), 16

D
DatabaseError, 14
DataError, 13
Date (in module MySQLdb), 13
Date_or_None() (in module MySQLdb.times), 18
DateFromTicks() (in module MySQLdb), 13
DateFromTicks() (in module MySQLdb.times), 18
DateTime2literal() (in module MySQLdb.times), 18
DateTime_or_None() (in module MySQLdb.times), 18
DateTimeDelta2literal() (in module MySQLdb.times), 18

DBAPISet (class in MySQLdb), 14
debug() (in module MySQLdb), 15
default_cursor (MySQLdb.connections.Connection at-

tribute), 16

E
Error, 14
errorhandler() (MySQLdb.connections.Connection

method), 16
escape() (in module MySQLdb), 15
escape_dict() (in module MySQLdb), 15
escape_sequence() (in module MySQLdb), 15
escape_string() (in module MySQLdb), 15

F
Float2Str() (in module MySQLdb.converters), 17
format_TIMEDELTA() (in module MySQLdb.times), 18
format_TIMESTAMP() (in module MySQLdb.times), 19

G
get_client_info() (in module MySQLdb), 15

I
IntegrityError, 14
InterfaceError, 14
InternalError, 14

L
literal() (MySQLdb.connections.Connection method), 16

M
mysql_timestamp_converter() (in module

MySQLdb.times), 19
MySQLdb (module), 13
MySQLdb.connections (module), 15
MySQLdb.constants (module), 19
MySQLdb.constants.CLIENT (module), 19
MySQLdb.constants.CR (module), 19
MySQLdb.constants.ER (module), 19

29

MySQLdb Documentation, Release 1.2.4b4

MySQLdb.constants.FIELD_TYPE (module), 19
MySQLdb.constants.FLAG (module), 19
MySQLdb.constants.REFRESH (module), 19
MySQLdb.converters (module), 17
MySQLdb.cursors (module), 18
MySQLdb.times (module), 18
MySQLError, 14

N
None2NULL() (in module MySQLdb.converters), 17
NotSupportedError, 14

O
OperationalError, 14

P
ProgrammingError, 14

Q
query() (MySQLdb.connections.Connection method), 17
quote_tuple() (in module MySQLdb.converters), 18

S
Set2Str() (in module MySQLdb.converters), 17
set_character_set() (MySQLdb.connections.Connection

method), 17
set_sql_mode() (MySQLdb.connections.Connection

method), 17
show_warnings() (MySQLdb.connections.Connection

method), 17
Str2Set() (in module MySQLdb.converters), 17
string_literal() (in module MySQLdb), 15

T
Thing2Literal() (in module MySQLdb.converters), 17
Thing2Str() (in module MySQLdb.converters), 18
Time (in module MySQLdb), 13
Time_or_None() (in module MySQLdb.times), 18
TimeDelta_or_None() (in module MySQLdb.times), 18
TimeFromTicks() (in module MySQLdb), 13
TimeFromTicks() (in module MySQLdb.times), 18
Timestamp (in module MySQLdb), 13
TimestampFromTicks() (in module MySQLdb), 13
TimestampFromTicks() (in module MySQLdb.times), 18

U
Unicode2Str() (in module MySQLdb.converters), 18

W
waiter (MySQLdb.connections.Connection attribute), 17
Warning, 14

30 Index

	MySQLdb User's Guide
	Introduction
	Installation
	_mysql
	MySQL C API translation
	MySQL C API function mapping
	Some _mysql examples

	MySQLdb
	Functions and attributes
	Connection Objects
	Cursor Objects
	Some examples

	Using and extending
	Embedded Server

	MySQLdb Package
	MySQLdb Package
	connections Module
	converters Module
	cursors Module
	times Module
	Subpackages
	constants Package

	MySQLdb Frequently Asked Questions
	Build Errors
	ImportError
	My data disappeared! (or won't go away!)
	Other Errors
	Other Resources

	Indices and tables
	Python Module Index

